The candidate confirms that the work submitted is their own and the appropriate credit has been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be considered as plagiarism.
Summary

This project is an investigation into the use of neural networks as robotic controllers, with reference to their viability on the Lego Mindstorms RCX Controller. The overall aim of the project is to use a neural network to control a robot capable of performing a simple task. These were the minimum requirements laid out at the start of the project:

- Develop a system of classes for implementing an artificial neural network on a Lego Mindstorms robot.
- Decide on a technique to determine the configuration of the network.
- Decide upon a simple task for the robot to perform.
- Produce at least one instance of a neural network that will perform the task.

During the course of the project, the following achievements were made:

- A system of classes was developed that are capable of implementing feed-forward and recurrent neural networks in software.
- A genetic algorithm was developed capable of finding configurations for the neural networks in a simulation environment.
- The genetic algorithm was used to configure neural networks capable of following black lines in a simulation environment.
- A neural network was implemented on the Lego Mindstorms RCX platform capable of following a black line on a white background.
Acknowledgments

I would like to thank my project leader Tony Cohn for his guidance and support. Thanks to Tom Carden for providing me with an excellent simulation environment. To Seth Bullock and Jason Noble whose stimulating lectures sparked my interest in bio-inspired computing, and to the rest of the Bio-systems Reading Group - Dave Harris, John Cartlidge, Dan Franks, and Neil Meckle for their inspiring discussions and patience when I didn't know what they were talking about.
Table of Contents

Summary..i

Acknowledgments..ii

Table of Contents..iii

Chapter 1 - Introduction...1
 1.1 The Problem..1
 1.2 Lego Mindstorms and the RCX Controller..1
 1.3 Neural Networks..2
 1.4 The Advantages of Using Neural Networks for Autonomous Robots.....................6
 1.5 Configuration Methods..7
 1.6 Previous Work Using Neural Networks for Robot Control..8
 1.7 The Layout of This Report..8

Chapter 2 – Design..9
 2.1 The Design of the Task..9
 2.2 The Choice of Configuration Method..10
 2.3 The Robot..10

Chapter 3 - The Neural Network..12
 3.1 Design..12
 3.2 Implementation..13

Chapter 4 - The Simulation...16
 4.1 Design..16
 4.2 Assumptions..17
 4.3 Implementing the Simulation..17

Chapter 5 - The Genetic Algorithm..22
 5.1 The Fitness Function ..23
 5.2 The Selection Routine..24
5.3 The Method of Generating a New Population...25
5.2 Implementation of the Genetic Algorithm...26

Chapter 6 - Results..29
6.1 A Network Created by Thinking About What Might Work.29
6.2 Not So Successful GA Networks...31
6.3 The Most Successful GA Net...32

Chapter 7 - Transferring the network to the Lego Mindstorms Robot......................35

Chapter 8 - Conclusion...37
8.1 Neural Networks...37
8.2 Genetic Algorithms..37
8.3 Simulations...37

Chapter 9 - Evaluation...38
9.1 Was this project successful?..38
9.2 Future Work..38
9.3 Practical uses of this project..39

References..40

Appendix A..43

Appendix B The Code Used to Implement the Neurons...44

Appendix C The Code Used to Implement the Genetic Algorithm............................49
Chapter 1 - Introduction

1.1 The Problem

The design of robot controllers has turned out to be much more problematic than modern science fiction ever envisaged. Machines have been developed which excel at processing a single stream of data, with computer power measured in instructions per second doubling approximately every 18 months. This is a fantastic achievement, but this type of processor does not fare well when presented with the complexities of a physical environment. The problems of the real world can be thought of as orthogonal to the problems of a super calculator. The calculator solves one group of very similar problems over and over again. The real world poses many different problems, perhaps all at the same time, and maybe for the first and last time. Similarly, the calculator processes one small data group at a time, for example it might have to work with two numbers using arithmetical logic. The robot controller is presented with a multitude of data items, such as the pixels in a video stream. This data must be combined somehow into a description of the state of the world and used to generate a reaction or course of action. The programming required for artificial intelligence tasks is therefore very different to the programming for number-crunching programs (Brooks, 1991). This is one reason why the field of robotics has made slow progress in comparison to other computer-related fields. Artificial neural networks are a different way of programming robots, because instead of explicitly stating the conditions which indicate a given situation has arisen and the exact motor responses required, the programmer creates a network of small decision-making modules which each have a small influence over how the robot will act. The robot's actions result from a combination of the outputs of these modules. Researchers and private individuals have reported some success in using neural networks to control robots. This project is an attempt to replicate some of those successes using the Lego Mindstorms RCX controller.

1.2 Lego Mindstorms and the RCX Controller

Lego Mindstorms is a product designed for building and programming robots. The RCX controller is a large Lego brick containing the computer that controls the robot. The RCX
was inspired by the programmable brick developed at MIT Media Lab, which receives funding from Lego (Martin). It is marketed primarily as a toy but also provides a cost-effective platform for robotics research.

The neural networks were written in software using an implementation of the C programming language written specifically for use with the RCX. The RCX comes with a programming tool which uses graphical representations of standard programming structures, which look a bit like lego blocks. The user builds his program as a combination of these blocks. This tool is very simple to use, because it has been built to help children get used to programming. It does not offer the flexibility required to implement neural networks because there is no provision for declaring and using variables, so NQC was used as the programming language. NQC stands for Not Quite C. It is fairly well established now with support for Linux, Windows and Macintosh computers, and was developed by David Baum.

1.3 Neural Networks

Artificial neural networks are an attempt to model the working of a brain. Throughout this project, it is to be assumed of any references to networks or neural networks that the intended meaning is artificial neural networks. Neural networks consist of one or more nodes which function in a similar way to neurons in the brain. They also have one or more input units and one or more output units. A node accepts a number of inputs, either from the input units or from other nodes, which are individually weighted. Simple nodes can be in one of two states, passive or active. Initially the output is 0, which represents the passive state. When the sum of the weighted inputs reaches a threshold, the node is triggered and the output changes to 1. This represents the active state, or firing, of the node. The simplest neural network has one node, and is referred to as the single layer perceptron. The single layer perceptron was proposed in 1943 by McCulloch and Pitts.
Figure 1(a) is a mathematical model of a single layer perceptron (Sima 1998):

The weights can be positive or negative. If the weight is positive the input will increase the chance of the node firing. If it is negative, then the corresponding input will inhibit the node. The weighted sum of the input values is the excitation level:

\[\xi = \sum_{i=1}^{n} w_i x_i \]

The excitation level is interpreted by the activation function to translate the excitation level into a more convenient piece of data. If the neuron was testing for the presence of natural light in a room, an answer between 0 and 1.76 wouldn't be very useful. An answer of either 1 or 0 however maps nicely onto Yes or No. There are three kinds of activation function. The simplest is the threshold function. In this function, the output is 0 if excitation is below a threshold value \(t \), and 1 if it is above. Figure 1(b) is a graph of a threshold function. When using the threshold function, some people prefer to think of the threshold as another input, which is equal to \(-t\). This is added to the excitation level before it is put into the activation function. Then the activation function can be thought of as outputting 0 if the excitation is less than 0, else 1.
The threshold function is suitable for single layer networks or where the output is a ‘yes or no’ type of answer. There are two other kinds of activation function, linear and sigmoid. In linear functions (Figure 1(c)) the output is proportional to the weighted input. In sigmoid functions (Figure 1(d)), the output varies but not in proportion to the input (Hinton, 1992). The benefit of using these functions is that more information about the original excitation level is passed forward to the next layer of nodes. This is necessary when using techniques such as the back-propagation technique (discussed in section 1.5) for training neural networks (Beale and Jackson).

Figures 1(b), 1(c), and 1(d) (1(d) taken from Matthews, J, labels added). These are the activation functions that are commonly used when modelling neurons.
Figure 1(e) is a simple neural network implementing an AND function (Sima 1998):

\[y = \begin{cases} 1 & \text{if all inputs are } 1 \\ 0 & \text{otherwise} \end{cases} \]

Figure 1(e) is a simple neural network implementing a boolean AND function. The inputs are all weighted at 1 so their contributions will either be one or zero. If all of the inputs to the network are 1 the total weighted inputs will be \(n \). After addition of the threshold \((-n)\) this will be 0. When this is evaluated using the threshold function, the output will be 1, because \(n - n \geq 0 \). If any of the inputs are 0, \(\sum \) will be less than 0, and the output will be 0. The network only produces an output of 1 if all of the inputs are 1, which is the correct implementation of an AND function.

We can think of the neuron as a simple decision making module. If the inputs satisfy the requirements for the neuron to fire, the output is 1. Otherwise, the output is 0. In order to make more complex decisions it is necessary to use more nodes. Nodes are grouped in one or more layers. The layout of the nodes is referred to as the topology of the network. The values and distribution of the weights is referred to as the configuration of the network (Sima 1998).

Some general types of neural network have been defined that aid discussion of the topic in general. Feed Forward networks are those in which all the nodes in one layer are connected to all the nodes in the next, with data flowing in one direction from the input layer to the output layer. This design is the easiest type of network to consider the working of. Recurrent neural networks have nodes with outputs connected to themselves and to nodes in layers which are upstream in the general flow of data. This gives the network a sort of memory, an awareness of the world’s state prior to the present situation. There are also GasNets, which
have nodes capable of modelling the use of gas in the brain. They use this to communicate to all the nodes within the distribution limits of the gas. The gas also has a time factor in that the nearest nodes will be affected immediately, whereas those at the limits of the gases reach will be affected much later. GasNets are a recent development of neural networks, and much less work has been done using them than the other types.

1.4 The Advantages of Using Neural Networks for Autonomous Robots.

Neural networks can be fairly confusing particularly if the topology is complex. It seems perhaps illogical to take something that is difficult to do, like programming a robot, and make it more complicated by introducing a method that is poorly understood. However there are advantages to using neural networks.

Autonomous robots have limited practical application at the moment, it seems unlikely that they will be trusted to operate in situations where they interact with humans or are responsible for the safety of people. One area where they have been used is exploration, sending a robot where it is too dangerous or too expensive to send a human. In these situations it is vitally important that the robot is robust. The standard computer architecture is not particularly robust, because the loss of one unit can lead to total failure for the entire machine. Neural networks have been shown to degrade gracefully (Beer) which means that if parts of the network are compromised the other bits can continue to function with performance degrading gradually as losses are incurred. It is conceivable that such a robot in a hazardous territory could lose a component and continue to operate, completing the mission in a longer time or perhaps even repairing itself.

Autonomous Robots in such an exploratory role would probably have to cope with sensor data that was unreliable and subject to levels of random noise. This is a problem for robot programmers because it is difficult to describe a situation accurately in order to specify the motor outputs required to deal with it if the inputs are likely to be varied. Neural networks have been shown to cope well with noisy data, even using it to their advantage (Cliff). This is partly because the nodes in a network make decisions based on a function of more than one input, so if one is abnormally high it has little effect on the overall working of the network.

The division of processing power between the nodes in a multiprocessor system means that much lower processing power can be used. One of the problems people writing robot controllers using centralized computer architectures have found is that processing power is quickly used up in modeling the situation to decide what to do next, causing what Brooks termed the “representational bottleneck”. Neural networks avoid this eventuality by
dispensing with representing the world situation internally and by dividing the processing between the nodes. Suitable controllers developed using neural networks would therefore not have the same requirement for the most advanced computer components available, meaning they could be developed at a much lower cost.

1.5 Configuration Methods

Determining the configuration of the network is a complicated task. The complexity increases exponentially as the number of nodes increases, because each node is connected to every other node. As Harvey et al state, humans are not designed for or used to thinking about complex systems such as these. To overcome this difficulty, various researchers have developed systems for the configuration of neural networks. The simplest is trial and error, adjusting the weights of each node until the network functions more or less correctly. This approach has been used successfully for simple networks, but if the network is large then this approach becomes tedious and haphazard (James 1995, Hoffman).

Around 1974 Paul Werbos invented the back-propagation algorithm. A sample set of data is presented to the network for which the desired output is already known. The actual output of the network is then compared to the desired results, and the weights are adjusted from the output nodes back through the network, in order to reduce the error (Hinton 1992).

The genetic algorithm (GA) is a system used to configure networks with little or no tweaking of the weights directly by the network’s developer. A network’s configuration is specified by a genotype, typically a string of digits representing the weights at each node. A random population of networks is generated and tested either in simulation or as an embodied agent. A fitness function is the test used to determine which genotypes will be used to create the next generation. For example, if you were trying to evolve an exploration robot, the fitness function might be based on how far the robots move. The genotypes from the top scorers are then reproduced using cloning, mixing and minor random mutations to make the next generation, which is usually the same size as the first. Using this Darwinian system the population gradually improves until an optimal system is reached. Genetic algorithms have been used successfully to evolve neural networks for controlling robots (Floreano, Husbands, Beer).
1.6 Previous Work Using Neural Networks for Robot Control

Here are a few examples of people who have reported success using neural networks for robot control. Beer produced a "dynamical systems perspective" for describing the interaction between a robot and its environment. He demonstrated that the networks could maintain states which changed over time and with interactions with the environment, allowing it to react to a sequence of events rather than just the current state. Beer et al produced a network for controlling a hexapod robot that used information from sensors on the limbs to vary the gait of the robot. The robot demonstrated that neural networks are robust because it was capable of dealing with the loss of some sensory data. Under these conditions the neural network's performance degraded gracefully - the gait worsened with the loss of components but still functioned. Husband et al made GasNets that could discriminate between simple shapes drawn on a screen. The networks would propel a robot towards a triangle, but ignore a rectangle. The networks were compared to other networks which did not use gas modelling, and were much less complicated than their standard counterparts when producing similar behaviour. They could be evolved much more quickly because of this reduction in complexity. Webb made a robot cricket which demonstrated the tracking response to a mating call using a much simpler neural pattern than most biologists had previously thought was required. It would move towards only one source of cricket song even if more were present, as observed in real crickets, and could differentiate between songs of different frequencies. This demonstrated the cross-disciplinary worth of studying neural networks, and together with the GasNets shows how advances in neuroscience and using biologically inspired computer controllers can benefit both disciplines.

1.7 The Layout of This Report

The following report is modular in structure, reflecting the work supporting it. It was initially written with a large design chapter and a large implementation chapter. This meant that references in the two chapters were awkward to go back and forth between. It was decided that it made more sense for the reader if all of the material concerning an individual part of the project, for example the genetic algorithm, was in one section. Furthermore the report's structure now allows the reader to dip into the report and read just the parts they are interested in. If he or she only wants to know about the genetic algorithm, then all the material on that topic is nicely grouped together.
Chapter 2 – Design

The first decision that needed to be made was what task was going to be set for the robot to perform.

2.1 The Design of the Task

Here are the criteria that were considered important for the task that was to be attempted:

- The first task should be possible using the equipment available.
- The first task should be fairly simple so that if the controller does not work it is possible to understand why.
- The first task should be complicated enough so that it could not happen by chance, so that we can say the network is controlling the robot.
- It should be simple to evaluate the controller's performance at the task so that it is easy to say that one robot is better at the task than another.

There are a number of tasks that are often attempted by people who are developing robot controllers. It was decided that one of these would be suitable, because they are proven to be achievable using the sort of equipment available. Here is a list of some of the most popular:

- Move towards or away from a light source.
- Find a particular object, or avoid bumping into an object.
- Follow a line which has been drawn on the floor.

It was decided that ‘following a black line on a white background’ fulfills all of the criteria required to be the task. It is not possible that the robot could perform this without the intervention of a suitable controller, because the direction of the robot has to be changed over time according to the direction the line travels in. The task is fairly simple however, and can probably be performed using a fairly basic neural network. The fact that the task can be performed over a given length of time as opposed to a task that has a finite length will make the evaluation of early stages easier. For example, a robot that searches for an object could be doing some proper searching but in the wrong direction. If the robot was being evaluated according to its proximity to the object after a given time it might score lower than a robot
that didn't move but happened to start in the right place.

2.2 The Choice of Configuration Method

Trial and error was not considered to be a suitable configuration method because it is not a systematic way to proceed and does not seem like a sound method or one that would scale up to more complicated networks. The back-propagation technique is more appropriate for designing neural networks for classifier systems because of its reliance upon a known set of inputs and corresponding outputs. In the case of a robot controller this sample set of data is difficult to generate because there are rarely absolutely correct answers in real life situations. As there has already been a tremendous amount of work done using back-propagation the decision was taken not to study this technique here. For this project a genetic algorithm was used to configure the neural networks, because it seemed the most interesting method and the most appropriate way to achieve the stated objectives.

Running a genetic algorithm involves producing a population of genotypes and then testing each one to determine the fitness that the corresponding phenotype would have. The genes are then selected for reproduction, and a new population seeded. Although the process can be described fairly quickly, the process of testing each individual can be very time consuming, especially if a large population is used. The process can take many runs and is very repetitive. For this reason the process was carried out in simulation.

2.3 The Robot

The RCX has three input ports and three output ports. The input ports can be connected to sensors that give the robot information about its environment, such as light or touch sensors. Information from these sensors will provide the input for the neural network. Motors can be attached to the three output ports. These motors are connected to actuators for example limbs or wheels which the robot uses to interact with its environment. The output from the neural network will be used to control the actuators.

The physical design of the robot is important because it affects the robot's ability to interact with the environment. It is also non-trivial because some of the designs I have seen have been quite complicated. However, a full investigation of potential designs is beyond the bounds of this project, so the design is only referred to here to provide a specification for the
robot and an explanation of how it works. There are two large wheels powered by two motors either side of the middle of the robot. The robot can steer by adjusting the power to either wheel. This was considered to be the easiest way to implement steering. A steering rack similar to the one found on a car could have been used, with one of the motors controlling forward motion and one controlling direction. The design chosen was less complicated to engineer and provided a more direct correlation between light sensor reading and motor output. It was therefore deemed to be more suitable for a neural network to control.

At one end there is a pair of light sensors that point at the floor. One of the main problems with this sort of equipment is the inconsistency of the ambient light present. For example, on a dark day, the light readings will be very different to on a bright sunny day. For this reason, the light sensors have a small light source attached to them. This is very useful for line detection, because it means that the light reading is more dependent upon the floor’s light-reflecting properties than the rooms ambient light levels as long as the light sensor is close enough to the surface. The first design that I built did not have the sensors close enough to the floor, so I rebuilt the arms holding the light sensors so that they were approximately half a centimetre clear of the floor. This meant that the contrast detected between the black line and the background was greatly improved.
Chapter 3 - The Neural Network

3.1 Design
The intention was to use the simplest design possible particularly at first, to encourage understanding of what is happening within the network. However there are minimal sizes of neural network that are capable of controlling a robot. The single layer perceptron, although a useful classifier based on multiple inputs, only produces one output and is therefore not capable of controlling two motors independently. The network will need at least two output nodes, one to control each motor. It would be possible for a robot to display line following behaviour using just one light sensor and employing a sweeping motion to detect line direction. However this is a fairly complex behaviour pattern and would require a recurrent network so that the robot could compare the current result to a previous one. It was decided that the simplest network capable of line following will be one that accepts two light sensors as the inputs. **Figure 3(a)** is a diagram of the network. The large circles represent the nodes that are responsible for decision making. Their outputs are sent to the motors. In the simulation the motors take a floating point value between 0 and 1 as their setting, so the neural networks configured using the genetic algorithm all used the sigmoid function in order that they should produce a range of compatible outputs. This range would have been too limited using the threshold function. This decision created problems when transferring the networks onto the RCX, which are described in chapter 7.

Figure 3(a) is a diagram of the network topology that was used.
In the diagrams of neural networks in the rest of this project the activation function of a node will be indicated by the icon inside it. It will also be indicated in the text. Figure 3(b) is the key for the node activation icons.

![Node Activation Icons]

3.2 Implementation

The neural network in the simulation and on the RCX are both implemented as software programs. Implementing the neural network in this way means that it still suffers from some of the weaknesses associated with the standard Von Neumann computer architecture. The system is not as physically robust as a neural network implemented in hardware using a multiprocessor system would be, in that the loss of one component of the computing architecture could be catastrophic. This is unlikely to happen because the robot will not be sent to any hazardous locations. It is also not as fast as a multiprocessor architecture could be, because the network has to update one node at a time. A multiprocessor architecture could update all the nodes at the same time, or perhaps alternate between updating even layers and odd layers if there was a time step required for communication. For networks with multiple nodes this would be faster than updating one node at a time even if the individual processors were slower than that used in the single processor architecture.

A neural network can be implemented in software fairly simply, using these data structures:

- A list of floating point values to represent the weights between each node and its inputs. This does not change throughout the lifetime of the network.
- A list representing the activation level of each node.

The neural network calculates its output by updating each node:
• Calculating the product of each input and its corresponding weight
• Summing all of the products
• Evaluating this value using the activation function

This process begins with the input layer, and works its way sequentially through the nodes to the output layer. This ensures that the input layer for each node has been updated before its own activation is calculated. Finally, if the network is being used to control a robot, the output of the output nodes is applied to the motors. Here is the sigmoid activation function that was used for the nodes in the simulation:

\[y = \frac{1}{1 + e^{-x}} \]

As mentioned in the minimum requirements, one of the project's aims was to create a class of Node that would be usable with lots of different types of networks. The minimum requirements suggested that this class should run on the robot. It was later considered more important that this flexibility should be present in the simulation nodes, because lots of different networks would be used in the simulation, and only the successful ones would be implemented on the robot. Figure 3(b) is a UML diagram of the Node class that was used to implement nodes in the simulation. The constructors are not listed here. The constructor used in the genetic algorithm took as its parameters a list of input sensors. The weights of the nodes in this constructor were randomly generated values between -1 and 1. It is very flexible because it has a list of Sensors and a list of Nodes, from which it accepts inputs. It is possible to add to the input lists after the Node has been created, because they are stored as vectors. This is done using the addInputSensor and addInputNode functions. This allows the programmer to add the Node itself to its own list of input Nodes, which means that recurrent networks are possible using this class. The sensor input list contains the generic Sensor class rather than the LightSensor class that was implemented for this project. It is still possible to use LightSensors as inputs, as all of the networks that were created for this project do, because LightSensor inherits from Sensor. This means that it would be easy to use this Node class with a different type of Sensor without changing it. The code for the Node class is included in Appendix B, for reference and because it is in the list of deliverables.
Figure 3(c) is a UML diagram of the Node Class. This shows the data structures used and the available functions.

```
Node
- input_sensors: vector <LightSensor*>
- input_nodes: vector <Node*>
- input_sensor_weights: vector <double>
- input_node_weights: vector <double>
- output: double

+ setWeights(newWeights: vector <double>): int
+ getWeights(): vector <double>
+ getOutput(): double
+ update(): void
+ addInputNode(newNode: Node*, nodeWeight: double)
+ addInputSensor(newInputSensor: Sensor, sensorWeight: double)
```

Figure 3(d) is a UML diagram of the Network class. The Network class is basically a wrapper for a group of nodes, which do most of the work. We can see in the diagram that there are vectors containing the sensors, nodes and outputs. The data item called “fitness” and the functions “mutate”, “setFitness” and “getFitness” are used in the genetic algorithm. When the “update” function is called, the network calls the update function of all of its sensors and all of its nodes starting with the input layer, and then sets the outputs of the network to the outputs of the nodes on the final layer.

Figure 3(d) A UML Diagram of the Network Class.

```
Network
- outputs: vector <double>
- inputs: vector <Sensor>
- nodes: vector <Node>
- fitness: double

+ getOutput(): vector <double>
+ update(e: Environment): void
+ mutate(): void
+ getFitness(): double
+ setFitness(newFitness: double): int
+ getSize(): int
```
Chapter 4 - The Simulation

4.1 Design

Jakobi puts forward a set of criteria for designing minimal simulations. The guiding principle is that elements of the simulation which are necessary for the agent to demonstrate the required behaviour should be present and as little else as possible. The reasons for using this method in this project are listed here:

- The controller needs to be able to make decisions based on limited information, so it is not necessary to simulate lots of information.
- If the simulation is complex, the controller could be taking advantage of a flaw in the simulation rather than using the environmental characteristics of the simulation to perform the task.
- A complex simulation which attempts to simulate the real world comprehensively will take longer to create and longer to run. As the goal of simulation is to save time compared to actually carrying out the experiment, this reduces its validity (Jakobi).
- It is the simplest way to progress.

It was decided that the elements of the robot's interaction with the environment that needed to be simulated in order to develop a robot capable of demonstrating line following behaviour were the following:

- The robot should be in an environment which contains a black line for it to follow.
- The motor outputs should be based upon the inputs received from the light sensors. The light sensor readings will need to reflect the robot's situation in relation to the black line. If the robot is over a black line, the result returned by the light sensor should be lower than if it is over white space.
- In order for the robot to demonstrate line following behaviour, the motor outputs should be interpreted as propelling the robot, and the robot's position should be adjusted accordingly.

Jakobi goes on to explain that in order to ensure that the controller can reliably transferred from the simulation to the real world it is necessary to randomly change the parameters.
governing interaction between the robot and its environment in the simulation. For example, if there was a value for adjusting the level of friction between the wheels and the floor, then this could be randomly adjusted after each generation, simulating a range of surfaces. This is to make sure that the controller has been tested with as many different parameters as possible. The aim is to ensure that the controller has demonstrated that it works when the parameters are as close as possible to the real life parameters. This part of the procedure was not followed because of the time limit involved in the project and the simplicity of the task and the simulation. This is also referred to in the Future Work part of the Evaluation chapter.

4.2 Assumptions

Here is a list of the assumptions that were made when designing and implementing the simulation.

1. In the simulation there is a direct correlation between the output the controller gives for the motor and the movement of the robot. In reality the robot's progress would be affected by friction or a lack of it between the floor and the tyres, fluctuations in battery output and other hardware flaws.

2. The readings from the light sensors are not affected by the ambient light in the room. In reality there is a base level of light present which generates a minimum reading for the light sensors. In the simulation if the light sensor is reading from a part of the image composed entirely of black pixels the reading is zero.

3. The light sensors in the simulation return data which is one hundred percent reliable. In reality the data would be affected by random noise due to the limitations of the sensors, which are not heavily insulated or tested to a high degree of accuracy.

4.3 Implementing the Simulation

The basis for the simulation was a project written by another student, Tom Carden. He has written a simulation environment with robots that can move around and sense each other, intended for developing flocking algorithms and to be extended for other purposes. This provided the modeling of the movement for the simulation used in this project because the
robots featured moved in the same way as my robot, with two motors driving two wheels and a caster wheel for support. It also provided a framework for proceeding in an object oriented way with developing the parts that were specific to my requirements. Object oriented programming allows more code re-use. Carden's code contains a class called a Sensor, which he has extended to make a Robot Sensor. The Robot Sensor has the same data types and functions as the Sensor without reproducing the original code. The sensor that was implemented for this project was a Light Sensor, so the Sensor class was extended to give it the abilities specific to a Light Sensor. Deitel and Deitel's C++ How To Program has a more detailed explanation of object oriented programming.

Calculating the Movement of the robots
The robot's steering is controlled using a differential drive system. This means that there are two wheels on either side of the robot which are independently controlled by two motors, providing motion and directional control (Lucas). Carden's code for determining the movement of the robot was used without modification, with the exception that in the first step the motor controls were updated from the neural network. At each time step, the program goes through this routine to see how far the robot has moved:

Where L = left wheel speed
R = right wheel speed
A = acceleration
V = velocity
RC = rotation constant = 2*PI
AC = acceleration constant = 5000
RV = rotation velocity (how fast the robot's direction is changing)
T = time step (how much time passes between loops)

1. Update the motor controls with the output of the controller
2. Calculate rotation velocity \(RV = L - R \times RC \)
3. Calculate acceleration \(A = (L + R)/2 \times AC \)
4. Adjust the robot's velocity \(V = A \times T \)
5. Adjust the robot's orientation \(\text{orientation} += RV \times T \)
6. Adjust location by velocity \(\text{location} += V \times T \)
The system is an efficient way to estimate the movement of a differential-drive system. In step 2 the rotation is calculated as the difference between the left motor output and the right motor output (see Figure 4(a)). In step 3 the acceleration is calculated as the average of the two motor outputs. Step 4 changes the velocity of the robot by the acceleration calculated in step 3, and steps 5 and 6 calculate the new orientation of the robot and then move it by an amount proportional to the velocity. Although at step 6 it treats the trajectory as a straight line, the distance is small and the error will therefore be fairly low. Treating the trajectory as a curve would involve more calculation for little gain in accuracy (Lucas). The exact values used for the rotation and acceleration constants are not that important, as long as they are appropriate. Carden's choices worked well, and were not changed.

Figure 4(a) is a diagram showing that the rotation produced is dependent on the difference between the two motor outputs. (G. W. Lucas, some minor modifications).

![Diagram showing rotation produced by differential-drive system](image)

\[
VR = \text{velocity of right wheel} \\
VL = \text{velocity of left wheel} \\
VR - VL
\]

Adding the Line to the Simulation

Updating the simulation environment to put a line on the floor involved extending the Scenery class to make a class called FloorPlan. This takes an image file and draws it on the background of the simulation. This is done before all of the other drawing so that it does not cover up the other elements of the scene. The image is composed of pixels which are either white (representing the background) or black (representing the line). The FloorPlan class generates two arrays of integers, one containing the X values of every black pixel, and one containing all of the Y values. The arrays are generated by examining the RGB value of each pixel in the image in turn, and adding it's coordinates to the arrays if the red value is equal to 0. It is only necessary to use the red pixel values because the
pixels are all either white or black, so the RGB values will all be equal. Maintaining this array saves time when calculating the robot's distance to the line (during the genetic algorithm), because it is only necessary to consider the points which are line pixels. The robot's proximity to a given line point is calculated using the X location and the associated Y location from these arrays. The robot's proximity to the line is calculated by analyzing each point in turn and keeping a record of the closest point's distance. This is replaced if the current point's distance is smaller. This routine is depicted in Figure 4(b).

Figure 4(b) is a flow chart showing the process used to determine the closest black pixel.

The FloorPlan class is also responsible for generating the light readings that the LightSensor requires. The class contains a function called getLightReadingAt which takes a cartesian coordinate as a parameter. This function returns a floating point value representing the light reading at that location, which is said to be the average pixel value in the 5 x 5 pixel square surrounding that location divided by the maximum total value of all the pixels. The white pixels have the value 255, and there are 25 of them within the bounds of the light sensor, so the sum of the pixel values is divided by 6375 to return a result between 0 and 1. This system means that the readings will vary in proportion to how much of the line is within the light sensor's field of vision, making the simulation a reasonable approximation of a real light sensor. The drawback of this system is that when the light sensor is totally over the black line the reading is 0, and when the sensor is not over any of the black line the reading is 1. Extreme readings such as these would not happen in real life because of the ambient light present in a room.
Figure 4(c) is a diagram to show how the light sensor readings are taken.

Adding Light Sensors to the Robot
Extending the Sensor class to make a LightSensor class was simple once the FloorPlan class (see previous section) had been implemented so that it returned light sensor values. The LightSensor class has two data types which are a pointer to the robot that owns it and the location of the LightSensor relative to the robot. The LightSensor has three functions called "update", "define" and "draw". The define and draw functions are used to draw the light sensor. The light sensor’s update function was required to calculate the coordinates of its own location by summing the vectors describing the bearing between the light sensor and the robot, the orientation of the robot, and the robot’s location coordinates. The light sensor then calls the FloorPlan getLightReadingAt function, sending as a parameter this location, to find out the current reading.
Chapter 5 - The Genetic Algorithm

A genetic algorithm is an evolutionary system. Noble highlights Darwin's requirements for an evolutionary system to work:

1. Heredity
2. Variation
3. Selection

Heredity means that individuals have similar characteristics to their parents. To make sure that the individuals in a genetic algorithm have this characteristic, an encoding scheme of their properties is used which describes their characteristics, rather like DNA. It can be copied in whole or in part to give descendants similar traits. It must be capable of expressing the entire search space and be easily generated and manipulated. An individual's characteristics expressed in the encoding scheme is referred to as the genotype. The physical counterpart of the genotype (the individual itself) is referred to as the phenotype.

The networks were limited to one particular topology so it was only necessary to express the weights of the network. The genotype for each network consisted of four floating point values, each corresponding to one of the weights in the network.

Variation means that individuals are different. This is present in the genetic algorithm because the encoding scheme is capable of expressing more than one type of individual, and the members of the population are created with random properties. Variation is maintained from generation to generation by random mutations.

Selection means that some individuals are more likely to reproduce than others. Selection in a genetic algorithm is achieved using a combination of the fitness function and the selection procedure.

The fitness function, the selection routine and the reproduction cycle will be treated here individually to avoid confusion. They are each as important as each other, because the algorithm does not work if any one is missing or poorly implemented. This can cause problems when you are writing the GA, because if it doesn't work it is difficult to know which part of the genetic algorithm is at fault. Furthermore, due to the repetitive nature of the genetic algorithm, small problems in one of these parts can be amplified during the iterations to create a larger problem.
5.1 The Fitness Function

The purpose of the fitness function is to apply selective pressure to a population. Selective pressure occurs when certain members of a population have characteristics that make them more likely to succeed in reproducing than others. Selective pressure is used in a genetic algorithm to influence reproduction so that individuals emerge with the required characteristics or abilities. The fitness function in the genetic algorithm used in this project allocates each member of the population a score depending on their performance during a period of testing. These scores are then used in the selection routing to ensure that the fitter individuals have more chance of reproducing.

Writing a fitness function which rewards the behaviour you are looking for is fairly difficult even when the behaviour and the network are simple. This is the first fitness function that was used:

- Calculate the distance to the nearest line pixel.
- Calculate the distance traveled since the last interval.
- Divide the distance traveled by the distance to the nearest pixel to get the score for this time step.
- Fitness is equal to the average score.

The fitness function was designed to reward robots that remained on or near the line. It was also considered important to make sure that the robot would not move onto the black line and then remain there until the time ran out. When this fitness function was used however, the robots that evolved traveled very quickly along paths that curved by varied amounts. They totally ignored the line, although sometimes the motor output would read a slight blip as they went over it. This behaviour is logical considering the way the fitness function and their environment worked. There was only a certain distance that the robots could go from the line because of the wall surrounding the environment. It seemed that by gaining points for travelling very fast they could compensate for any points lost by not actually being on the line. The circular trajectory was probably encouraged by the fact that if they hit a wall and stopped they would lose points for not moving. The ones that were turning would move round and run off in the other direction. This fitness function was tried with different thicknesses and shapes of line with no success.

The next fitness function was similar, but this time the robot was only rewarded for moving if it was on the line, or at least within five pixels. This gave rise to much the same behaviour.
as the previous function, although it was noted that the robot's path was normally a similar sized circle to the one that the line drew. This was moderately encouraging, because it at least indicated that the GA was capable of producing different robots, and that it might be close to working properly.

It was noted that the robots were traveling too fast for the line to have much of an effect on their motion, so the reward for moving was removed. In the next fitness function the only way the robots would score points after each time step would be by being near to the line.

To reduce the chances of robots being rewarded for having the fortune to start on the line the robots would be tested at 10 different locations in the picture. This also meant that good robots would not be penalized for starting in a bad place. The time period that each robot was tested for during each test was reduced, because the good robots would either find the line in the first minute or not at all, due to the simplicity of the search method. The final fitness function looked like this:

- Start the robot at a random location
- Calculate the distance to the line
- Score for this time step is the inverse of this distance
- Repeat the above 10 times
- Fitness is the average score

This fitness function is incredibly simple, because it just amounts to giving the robots points for being near the line. This works in this situation because the network is so simple. There was no need to reward the robots for moving because it was very unlikely that a robot would evolve that could move onto the line and stop. A node using the sigmoid function used in this project only outputs a number close to 0 if the excitation level is below -5. As the light readings vary between 0 and 1 this would only happen with weights so low they were never obtained by any of the networks developed in the genetic algorithm.

Keeping the fitness function as simple as possible has a similar benefit to keeping the simulation minimal. It means that it is harder for the controllers to take advantage of a flaw in the fitness function in order to increase their fitness without performing the task. With a more complicated task however it is unlikely that one this simple would work.

5.2 The Selection Routine

The selection routine determines which genotypes will be included (wholly or in part) in the
next population. There are many types of selection routine to consider, but they normally have a lot in common with these main types:

- **Elitism** – the highest scoring genotypes are selected.
- **Tournament selection** – groups of genotypes from the population are chosen randomly, and the one with the highest score is selected.
- **Roulette wheel selection** – each genotype's chance of reproduction is equal to his own fitness as a percentage of the groups fitness.

When choosing a selection routine it is important to consider the size of the population, the amount of variation possible within the genetic encoding method, and the method of reproduction. It was decided that a large population would not be required, because the level of diversity possible within the genetic encoding scheme was fairly small. Initially the selection routine used was elitism, because this seemed like the routine that would apply the most evolutionary pressure on the population. The problem that was observed when using a small population and elitism for selection was that after very few generations there was very little variation within the population. The evolutionary pressure was too great to allow genetic variation within the gene pool. It is important that the evolutionary pressure should allow some networks that do not score as highly to reproduce, because two good solutions will not always have similar genetic encodings. In order for other good solutions to be found it is necessary to allow the genetic algorithm to search through poor solutions. Tournament selection was implemented and it was observed that the genetic algorithm was searching a reasonable section of the gene pool after the reproduction method had been selected (see below).

5.3 The Method of Generating a New Population

In order to satisfy the an evolutionary system's requirement for heredity, it is necessary to use some reproduction when generating the new population. As the random genotypes created when the genetic algorithm is started are unlikely to include the entire genetic search space, genotypes are normally mutated at random to increased the chances of other parts of the search space being tested. A low percentage chance of mutation is normally used, and mutations are normally by a low amount, so that their influence does not cancel out the work of reproduction. At first it was decided that each genotype would have a 10% chance of having one of its floating point values mutated by a random value between -0.1
and 0.1.
Reproduction can be sexual or asexual. Sexual recombination means that genotypes are generated as a combination of two or more genotypes from the previous generation. This was the method that was used when the first genetic algorithm was implemented. It was soon noted that the weights of the neural networks it was producing had little or no variation after very few generations. This is because the population and the amount of variation possible was very small. Each sexual recombination reduces the variation present in the population, because at each reproduction one genotype is produced from two genotypes.
Asexual reproduction means that each selected individual's genotype is copied into the new population without being combined with another's. This method was used to try to reduce the amount of convergence. In order to ensure that the GA would search through a larger part of the search space, the rate of mutation was increased so that every genotype would have one of its floating point values mutated before being put back into the gene pool.

5.2 Implementation of the Genetic Algorithm

Figure 5(a) is a flow chart showing the main processes of the genetic algorithm.
A population of individuals was generated randomly, and each one was ran in the simulation environment for an equal amount of time. At each time step the robot's situation was assessed using the fitness function. Then the selection routine was used to select the fortunate individuals who would be contributing to the new generation. Then the new population was created, and the process repeated until the specified number of generations had been completed. The size of the population and the number of generations was adjusted quite a few times during the first few runs, but settled at about 20 individuals and about 30 generations. Often the genetic algorithm was halted early if it seemed like there was little variation present in the population or between two generations. The final code for the genetic algorithm is included in Appendix B, for reference and because it was in the list of deliverable items for the project.

When I started writing the genetic algorithm, a class called Genotype was implemented to use as an encoding system for the weights of the nodes. The realization was made that this class held nearly exactly the same data as the Network class did, and that the copying of this data from the Network class to the Genotype for the purposes of reproduction and then back to the Network class for testing was a complete waste of processor time. The functions and data in the Genotype class that were necessary for the genetic algorithm to function were moved into the Network class.

The picture that was used, which is analogous to the environment that the robot was developing in, was very important. If a picture with a line that was too thin was used, the robots didn't react to it. If the line was too thick, the fitness function would take a lot longer to run. The final adjustment that was made before actually getting the genetic algorithm to work was increasing the number of lines in the picture, so that it was more likely that the robot would run over the line and it would have a chance to follow it. Care was taken to ensure that there was space at the edge of the picture for robots that weren't very good at line following to flounder in so there was no possibility of them getting jammed into a corner with part of the line in it and scoring highly despite their inability.

It would seem from this report that the implementing the genetic algorithm was a fairly straightforward procedure, but this is not the case. Many combinations of fitness function, selection procedure, reproduction method and line image were tried before one that worked quite well was found, and all the time bug checking had to be performed to check that a code error was not stopping the algorithm from working. A genetic algorithm can be very time consuming if you have little experience of them, and because the solution always
seems to be just around the corner it is easy to spend much more time doing it than is justified for finding the solution to a simple problem like the one discussed here. Hopefully, the difficulty involved in writing one becomes less and less the more familiar you are with them. I found the advice offered to me by people who had already done them to be very useful, which supports this theory.
Chapter 6 - Results

As mentioned previously, many of the networks that were created just went round in circles of varying sizes. This is in part due to the simplicity of the networks. There is no recurrency in the network which would allow it to be aware of previous states, so the network can only react to the two current readings. More complex behaviour would require more connections between the nodes, or more nodes. There are only really three situations the network can be in:

- The left light sensor's reading is higher
- The right light sensor's reading is higher
- The readings are the same

The resulting behaviour can only be a combination of the reactions to these situations, with the reactions being more or less pronounced depending on the degree of inequality between the two readings.

6.1 A Network Created by Thinking About What Might Work.

Whilst work was being done to get the genetic algorithm to work, a set of weights was thought of and tried them out in the simulation. The weights worked quite well. Here are the weights of Network A:

Figure 6(a) is a diagram of Network A.
The theory behind how it works is fairly simple, but it helps to consider actual situations the network would encounter to understand how it works. If both the light sensors read the same value, then the Network A's outputs are equal, and the robot moves forward in a straight line. If the left sensor's reading is lower (which would indicate that the left sensor was over the line), then the left motor's output is reduced, and the robot turns towards the line. The same happens but in reverse if the right sensor's reading is lower. Here's how the weights work when the readings are unequal:

Left sensor's reading = 0.2
Right sensor's reading = 0.8

<table>
<thead>
<tr>
<th>Input 1 * weight 1</th>
<th>Input 2 * weight 2</th>
<th>Total</th>
<th>Activation after sigmoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 * 1.0 = 0.2</td>
<td>0.8 * 0.1 = 0.08</td>
<td>0.28</td>
<td>0.569546</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.694236</td>
</tr>
</tbody>
</table>

And here is a chart of the outputs which results from unequal and equal readings, with the resulting turn indicated.

<table>
<thead>
<tr>
<th>Left input</th>
<th>Right input</th>
<th>Left output</th>
<th>Right output</th>
<th>Difference</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>0.569546</td>
<td>0.694236</td>
<td>0.12469</td>
<td>Left</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>0.694236</td>
<td>0.569546</td>
<td>0.12469</td>
<td>Right</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.706822</td>
<td>0.706822</td>
<td>0</td>
<td>Straight</td>
</tr>
</tbody>
</table>

This tactic is fairly good, because it works if the line is between the sensors as well as if it is outside the sensors. If one of the sensors is about to cross the line, that side's motors are slowed to prevent it. This network was reasonably good at line following. If the robot started out in the right direction, it would latch onto the line, and not leave it unless it went around a particularly sharp bend. It only worked if it was approaching the line at the right angle. If it was coming at the line head on, it would slow down but drive straight over. However such a simple network is only equipped to deal with a small set of situations, so I considered this to be close to the best results achievable with a network of this kind. It was decided that the success of the GA would be measured against this network. If it could produce something
that was as good at line following as the network above, I would be able to say that it had worked.

6.2 Not So Successful GA Networks

There were many unsuccessful networks that the GA developed before it was fine-tuned to its peak performance. Even then it would produce networks of varying performance. Network B is an example of a network produced by the GA that was less effective.

Figure 6(b) is a diagram of Network B

<table>
<thead>
<tr>
<th>Left input</th>
<th>Right input</th>
<th>Left output</th>
<th>Right output</th>
<th>Difference</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>0.684535</td>
<td>0.559308</td>
<td>0.125227</td>
<td>Right</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>0.602352</td>
<td>0.552128</td>
<td>0.0502241</td>
<td>Right</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.721512</td>
<td>0.588575</td>
<td>0.132937</td>
<td>Right</td>
</tr>
</tbody>
</table>

We can see from the table that this network favours quite strongly the right hand turn. We can see from the diagram that when the right light sensor is over the line, the left sensor will slow down because the most significant weight is the weight from the right light sensor to the left motor output. The tactic it employs is to always try to turn right until the turn will carry the right input sensor over the line, at which point the left motor will slow down to stop it from going over. It looks almost as if the robot is pressing the right-hand light sensor against the line. This tactic will only work if the line is circular and the robot can only go round it in one direction. Figure 6(c) is two screenshots of Network B in action. In the first picture the robot is lucky enough to start off facing in the right direction. In the second picture, which is likely
to happen on more occasions, the robot crosses the line many times, its trajectory adjusted by a slight amount each time until it finally hits the line at the correct angle to allow the slowing of the left motor to keep it more or less on the line in the middle. Note that if the line’s angle is too steep, the robot leaves the line for a short period and then rejoins it later. Note also that the left light sensor has little effect in producing this behaviour, being permanently over the non-line area of the picture.

Figure 6(c) is two screenshots of Network B in action.

![Figure 6(c)](image)

The reason that Network B is included in this report even though it was not the best one produced is that the genetic algorithm converged to it and the majority of the population soon resembled this one. Premature convergence due to excessive evolutionary pressure was mentioned during the previous chapter, and this is a similar problem. The genetic algorithm has prematurely converged on a non-optimal solution. It is possible that the genetic algorithm would never have found a solution similar to the supposed optimal one in section 6.3. This is because the differences between the weights are big. As soon as the networks move away from the suboptimal solution their fitness decreases because they are implementing neither solution.

6.3 The Most Successful GA net

Here is a diagram of Network C. This network also evolved with help from the genetic algorithm, and produced the most efficient line following behaviour:
Figure 6(d) is a diagram of Network C

Here is a table of the inputs and outputs of network C, showing how the controller responds to even and uneven sensor readings:

<table>
<thead>
<tr>
<th>Left input</th>
<th>Right input</th>
<th>Left output</th>
<th>Right output</th>
<th>Difference</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>0.393921</td>
<td>0.489577</td>
<td>0.095656</td>
<td>Left</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>0.609226</td>
<td>0.349077</td>
<td>0.260149</td>
<td>Right</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.50264</td>
<td>0.370424</td>
<td>0.132216</td>
<td>Right</td>
</tr>
</tbody>
</table>

This network was better at line following than Network A. We can see some similarities in the weights. The two inside weights (w2 and w3 from the diagram in chapter 3) are both much smaller than the two outside weights. In common with Network A, this network can follow the line in either direction, although it does have some problems with very tight left hand turns, as can be seen in Figure 6(e). The robot is predisposed to turning the robot to the right, in a similar manner to Network B. When the robot is not on the line, it goes round in a circle. This is because both of the weights on the right side (w3 and w4) are lower than those on the left side. This is a better tactic than going straight forward if you know you’re in the vicinity of the line. The picture used to generate these networks had more lines on it, so a robot turning through an average sized circle would definitely have hit the line fairly quickly. If the robot had been traveling in a straight line like Network A did and had the misfortune to start off facing the wall, it would be stuck there and do no line following. There are two more advantages. If the weights for the light sensors are symmetrical and the robot hits the line straight on, it normally goes straight over because both motors slow down by the same amount. The robot that is always trying to turn can’t really hit the line head on. As
well as that, if a robot using this controller goes over the line or leaves the line at a sharp bend it goes round in a circle and has another chance to rejoin it. This can take several passes with the robot's path being adjusted by a small amount each time it circles, due to contact with the line. This robot was better at line following than Network A, so the genetic algorithm was judged to be successful in finding a line following solution. Network C took a lot longer to develop than Network A, but was a better solution overall.

Figure 6(e) is two screenshots of Network C in action. The same light sensor is being used to follow the line in both cases, despite the fact that the robot is traveling in different directions. In the picture on the right, the robot has left the line and later rejoined it.
Chapter 7 - Transferring the network to the Lego Mindstorms Robot

Once Network A was working, the possibilities of getting it to work on the Lego Mindstorms platform were investigated. It was soon discovered that there would have to be a few changes in the way the network on the robot worked. The Lego Mindstorms outputs work in integers only, using a function called SetPower. It is possible to set the power of the motors to an integer from 0 to 7 inclusive. In fact, in NQC there is no provision for using floating point values at all. This presents two difficulties. Firstly, the sigmoid function used for the activation levels of the network delivers a floating point value between 0 and 1, which can't be calculated as an integer. Secondly, the motors in the simulation could be set to a floating point value between 0 and 1, giving a good deal more possibilities than eight different values. To work around this, a network was implemented using a linear function to calculate the activation levels of the nodes. This also meant that the outputs of the network would be usable motor settings. Figure 7(a) is a graph of the linear function:

Figure 7(a) is a graph of the linear activation function used on the RCX.

Unfortunately, it was found that the motor settings on the robot were not sufficiently varied to steer it effectively using the design that had been built. The light sensor’s readings were updating, and the motors' outputs were changing accordingly, but this was having no visible effect on the path of the robot, apart from the very occasional and slight turn. I decided to set the motors to off if the activation of the node was below a certain threshold. I reimplemented the network so that the activation function was a threshold function, using a
light sensor reading as the threshold. The weights that the nodes receive from the opposing side's light sensor were close to 0, so the assumption was made that this was the effect they had. The network could then be implemented like this:

Figure 7(b) is a diagram of the network implemented on the RCX.

![Diagram of network](image)

This network is even simpler than the one that was originally designed. It is very similar to the first examples of robots in Braitenberg's book *Vehicles*. It works because if one of the light sensors goes over the black line, the reading of the light sensor goes below the threshold for the neuron to fire and it stops the power to the motor. This does not stop the wheel from turning altogether, but slows it enough to make the robot turn and stay on the line. The robot was traveling very fast though, and would only follow the line one way around the circle. The light sensors in the robot's program loop were switched so that the other one updated first, and when it was found that the robot would now only do line following in the other direction. From this observation the conclusion was drawn that the robot was moving too fast for the controlling equipment, and the motors were geared down using a larger gear for the wheel axles and a smaller one for the motor outputs. This greatly improved the performance of the robot.

Unfortunately, this was the only network that there was sufficient time to implement on the RCX.
Chapter 8 - Conclusions

8.1 Neural Networks
Neural networks can be used to design robot controllers and have the potential to create robust and flexible solutions. However they are not easy to design or configure and therefore it is necessary to use special techniques when developing them.

8.2 Genetic Algorithms
Genetic algorithms can be used to solve problems that humans find difficult to think about. Genetic algorithms are one technique that can be used to configure neural networks. Using a genetic algorithm in conjunction with neural networks it is not necessary to program the robot with the ability to detect when situations have arisen and specify all of the corresponding motor outputs. Unfortunately, the genetic algorithm is not without its own problems:

- The genetic algorithm can take a long time to run (Boers).
- The fitness function is not easy to write. It may be more interesting to specify the behaviour you would like to see at a higher level than motor outputs, but if you spend more time writing the fitness function than it would have taken you to program the robot's behaviour in the standard way it is hard to justify the use of a such a convoluted technique (Zaera et al).
- There is no guarantee of success (Zaera et al).

8.3 Simulations
A simulation environment can be used to automate the procedure, removing the necessity for someone to perform a mundane and repetitive testing procedure. However it is important that the robot architecture is examined before the simulation is created to ensure that it is modelled accurately.
Chapter 9 - Evaluation

9.1 Was This Project Successful?

Here are the minimum requirements that were specified at the beginning of the project:

1. Build a suitable robot incorporating the Lego Mindstorms RCX Brick.
2. Develop a class library which implements a neuron. This should:
 i. Be connectable to any number of other neurons.
 ii. Process inputs to produce outputs.
 iii. Be able to accept multiple inputs and outputs.
3. Design a simple task for the robot to perform.
4. Investigate the techniques which have been developed to configure artificial neural networks.
5. Using one or a combination of the techniques from part 4 as a starting point, develop a network using the class library from part 2 which can perform the task in part 3.
6. Evaluate the design of the robot and the approach taken.

If these minimum requirements are used as the criteria to judge the success of the project it is fair to say that it has been successful, as all of the minimum requirements have been met.

9.2 Future Work

Future directions that could be taken to extend this project include the following:

Some time could be spent making the simulation more realistic. As mentioned in the assumptions, real sensors do not return accurately predictable results. Jakobi proposes that simulation parameters be adjusted at random to ensure that a network capable of dealing with the various situations is created. This aspect could be incorporated by adding random noise to the light readings. After each generation, the probability of it occurring would be adjusted.

Recurrent neural networks could be used to control the robot. A recurrent neural network would allow the network to exhibit more complex behaviour. Using a recurrent network, it
might be possible to get the robot to use a better strategy for searching for the line. It might be able to use a side to side sweeping pattern for example, and then change to a more reactive strategy when the line was found. Implementing recurrent networks in the simulation would not be too difficult, because of the flexibility that was built into the software produced in this project.

GasNets could be developed, although this would require some extension to the classes used to implement the networks.

It would be interesting to implement a controller using electronic components for the neurons instead of using the RCX. It would be possible to test the robustness of the setup by removing components to see how this affected its performance.

9.3 Practical Uses of This Project

Neural networks of the sort used during this project are too simple to have applications controlling a robot in which they the only control structure of the robot. It is unlikely that someone would be trying to program a line following robot without success. This project is modular in structure, and I think that this is how a neural network as simple as the one developed in this project could find a purpose in the real world. A network as simple as the ones discussed here could be used to control part of a robot that was built as separate modules. For example, it could control a camera on top of an exploring robot, to make sure it was always pointing towards a light part of the scene, so that as much information was received as possible.

Another possibility of a modular use for this sort of network could be in a subsumption architecture as proposed by Brooks. There would be many small neural networks connected to the same inputs and outputs. The networks are ranked according to their importance, and can only affect the robot's actions if there are no higher ranking networks trying to influence the robot. In this way, many small types of behaviours could be combined into a more complex set.

Finally, Bonabeau et al suggest artificial systems could be implemented using group interactions to generate apparently intelligent systems from collections of organisms exhibiting simple behaviours. It is conceivable that swarm systems could be created capable of complex tasks, using artificial agents controlled by networks as simple as the ones used in this project and configured using similar techniques.
References

Brooks, R, (1991b), Intelligence without representation, Artificial Intelligence, 47(1--3):139--159

Appendix A

My personal motivation for doing this project was to have a greater understanding of how neural networks and genetic algorithms worked, and whether it would be possible for me to reproduce some of the inspiring work I had read about during the AR35 course. I have definitely achieved the first part of this, but I did expect to do more of the second part than I ended up doing. I would have liked to have spent more time actually working with the robot. If I hadn’t had to spend so much time implementing the genetic algorithm I might have been able to move onto a more complex task with the robot. I think I underestimated the amount of time it would take me to implement the basic techniques that are described in this report. This project has been a great experience for me and was an opportunity to put into practice the object oriented techniques that we learnt in the programming modules. Here is a list of the main lessons I will take away from it:

Test classes before they are included in the rest of your program. This can be done easily using a simple function that just calls the constructor, performs the functions in the code, outputs the results and then exits. This can save a good deal of bug fixing time in the long run.

Getting involved with other people in your line of work helps you to progress. Open discussion with people working in fields relating to this project was extremely helpful for me, because it inspired me with ideas that I might not otherwise have thought of.

Make sure you provide yourself with feedback if you are implementing a long-running program like a genetic algorithm by outputting to the screen at appropriate intervals. You will be able to see if there is a problem, and maybe have a guess at what it is.

If you are using more than one type of architecture, don’t make assumptions about their capabilities or compatibilities. If I had investigated the programming of the RCX more thoroughly, my simulation would have transferred to the robot a lot more easily.

When attempting a large coding project, one day of planning will be more productive and less frustrating than a week of reimplementation due to poor design.
Appendix B The Code Used to Implement the Neurons

/*
 * node.h - class for modelling the action of a neuron
 * written by Richard Marston
 */

#ifndef NODE_H
#define NODE_H

#include "environment.h"
#include "network.h"
#include <vector>

class Node {
private:
 // the list of input sensors
 vector <Sensor*> input_sensors;
 // the list of input nodes
 vector <Node*> input_nodes;
 // the weights for the sensors
 vector <double> input_sensor_weights;
 // the weights for the nodes
 vector <double> input_node_weights;
 // the output
 double output;

public:
 // empty constructor – could be useful for a custom node
 Node();

 //This constructor is for a node with input nodes and sensors. Weights to be
 //specified in the vectors
 Node(vector<double> ld, vector <Sensor*> l, vector <double> nd, vector <Node*> n) {
 if (ld.size()==l.size() && nd.size()==n.size()) {
 for (unsigned int i=0;i<l.size();i++) {
 addInputSensor(l[i], ld[i]);
 }
 for (unsigned int i=0;i<n.size();i++) {
 addInputNode(n[i], nd[i]);
 }
 }
 else {
 cout<<"number of weights does not match number of sensors or nodes in "
 <<"Node::Node(double, sensor, double, node"<<endl;
 exit(1);
 }
 }

};

#endif // NODE_H
This constructor is for a node with sensors only. Weights must be specified too.

```cpp
Node(vector<double> d, vector<Sensor*> l) {
    if (d.size()==l.size()) {
        for (unsigned int i=0;i<l.size();i++) {
            addInputSensor(l[i], d[i]);
        }
    } else {
        cout<<"number of weights does not match number of sensors in "
        <<"Node::Node(vector<double>, vector<sensor*)"<<endl;
        exit(1);
    }
}
```

This constructor is for a node with sensors. Random weights are allocated

```cpp
Node(vector<Sensor*> l) {
    for (unsigned int i=0;i<l.size();i++) {
        addInputSensor(l[i], (double)rand()/RAND_MAX);
    }
}
```

This constructor is for a node with input nodes only. Weights are specified in the double vector.

```cpp
Node(vector<double> d, vector<Node*> n) {
    if (d.size()==n.size()) {
        for (unsigned int i=0;i<n.size();i++) {
            addInputNode(n[i], d[i]);
        }
    } else {
        cout<<"number of weights does not match number of nodes in "
        <<"Node::Node(vector<double>, vector<node*)"<<endl;
        exit(1);
    }
}
```

Functions for getting the weights of individual inputs.

```cpp
double inputNodeWeight(unsigned int i) { return input_node_weights[i]; };
double inputSensorWeight(unsigned int i) { return input_sensor_weights[i]; };
```

Functions for finding out how many nodes/sensors there are.

```cpp
unsigned int inputNodeArraySize(){ return input_nodes.size(); }
unsigned int inputSensorArraySize() {return input_sensors.size(); }
```

Functions for setting the weights and finding out the weights

```cpp
unsigned int setWeights(vector<double> w);
vector<double> getWeights();
```

Functions for updating/outputting the node's output
double getOutput();
void update(Environment e);

 // Functions adding inputs after construction
 unsigned int addInputNode(Node* nod, double d);
 unsigned int addInputSensor(Sensor* l, double d);

 // This overloads the << operator so you can output a node easily
 (cout<<node;)
friend ostream &operator<<(ostream& output, Node* nod) {
 output<<"Node with ",<<nod->inputSensorArraySize()," sensor inputs and ",<<nod->inputNodeArraySize()," input nodes:
 for (unsigned int i=0; i<nod->inputSensorArraySize();i++) {
 output<<"sensor input with weight ",<<i+1<<":",<<nod->inputSensorWeight(i)<<endl;
 }
 for (unsigned int i=0; i<nod->inputNodeArraySize();i++) {
 output<<"node input with weight ",<<i+1<<":",<<nod->inputNodeWeight(i)<<endl;
 }
 return output;
}

#endif
/*
 * node.cc function blocks for node.h
 *
 * written by Richard Marston
 *
 */

#include "node.h"

// Update the output variable. Sums weighted inputs to find value.
void Node::update(Environment e) {
 double d=0.0;
 for (unsigned int i=0;i<input_sensors.size();i++) {
 d += input_sensors[i]->getOutput() * inputSensorWeight(i);
 }
 for (unsigned int i=0;i<input_nodes.size();i++) {
 d += input_nodes[i]->getOutput() * inputNodeWeight(i);
 }
 output = 1.0/(1.0+exp(-d));
}

// Get the output variable
double Node::getOutput() {
 return output;
}

// Set the weights
unsigned int Node::setWeights(vector <double> w) {
 if(w.size() == input_sensors.size() + input_nodes.size()) {
 input_sensor_weights.clear();
 input_node_weights.clear();
 for (unsigned int i=0;i<input_sensors.size();i++) {
 input_sensor_weights.push_back(w[i]);
 }
 for (unsigned int i=0;i<input_nodes.size();i++) {
 input_node_weights.push_back(w[i]);
 }
 return 1;
 }
 else {
 cout<<"n!! WARNING wrong number of weights in array in call to "
 "Node::setWeights!!"<<endl;
 return 0;
 }
}
// Get weights – this is used in conjunction with set weights to adjust the weights
vector<double> Node::getWeights() {
 vector<double> d;
 for (unsigned int i=0; i<input_sensor_weights.size(); i++) {
 d.push_back(inputSensorWeight(i));
 }
 for (unsigned int i=0; i<input_node_weights.size(); i++) {
 d.push_back(inputNodeWeight(i));
 }
 return d;

 // Functions for adding inputs
unsigned int Node::addInputNode(Node* nod, double d) {
 input_nodes.push_back(nod);
 input_node_weights.push_back(d);
 return 1;
}
unsigned int Node::addInputSensor(Sensor* l, double d) {
 input_sensors.push_back(l);
 input_sensor_weights.push_back(d);
 return 1;
}
Appendix C The Code Used to Implement the Genetic Algorithm

/*
 * geneticalgorithm.h – class for evolving robot controller in simulation
 * written by Richard Marston
 */
#ifndef GENETICALGORITHM_H
#define GENETICALGORITHM_H
#include "animat.h"
#include "environment.h"
extern Environment e;

class GeneticAlgorithm{

private:
 // The list of networks
 vector <Network*> population;
 // Robot motor settings
 vector <double> controls;
 // The robot – instance of class Animat written by Tom Carden
 Animat* a;
 // Index number of network being tested
 unsigned int current;
 // How many networks are in population
 unsigned int populationSize;
 // How many generations are we testing
 unsigned int generations;

public:
 // This is the constructor. The number of generations has to be specified.
 // A population and animat have to be included.
 GeneticAlgorithm(unsigned int gens, vector <Network*> pop, Animat* an) {
 current=0;
 a=an;
 generations=gens;
 for (unsigned int i = 0;i<pop.size(); i++) {
 population.push_back(pop[i]);
 }
 populationSize=population.size();
 controls.push_back(0.0);
 controls.push_back(0.0);
 }
 // The destructor
 ~GeneticAlgorithm();

 // A detailed description of the functions below is in the next section
 int run();
};
void nextGeneration();
double findFitness(Network*);
unsigned int size(){ return populationSize; }
Network* net(int i) { return population[i]; }
int toFile(char* file_name);

#endif
/*
 * geneticalgorithm.cc - function blocks for geneticalgorithm.h
 * written by Richard Marston
 */

#include "geneticalgorithm.h"
#include <fstream>

// findFitness - this is the fitness function
double GeneticAlgorithm::findFitness(Network* gen) {
 double x,y;
 double score=0.0;
 double elapsedTime=0.0;
 double timesteps=0.0;
 double distance,newdistance;

 // This sets the robot's controller to the network we are testing
 a->controller=gen;

 // Test each network 10 times in random locations
 for (int i=0;i<10;i++) {
 elapsedTime=0.0;
 a->resetRandom();

 while(elapsedTime <= p.timeLimit)
 {
 distance=1000.0;

 // For each line pixel, calculate its' distance, and substitute it for the
distance to // the line if it is the closest one found yet.
 for(int i=0;i<e.scenery[0]->getDataSize(); i++) {
 newdistance=sqrt(
 (e.scenery[0]->getDataX(i)-x)*(e.scenery[0]->getDataX(i)-x) +
 (e.scenery[0]->getDataY(i)-y)*(e.scenery[0]->getDataY(i)-y));
 if(newdistance<distance) {
 distance=newdistance;
 }
 }

 // Add the inverse of the distance to the line to the score
 // Networks near the line score more.
 score+=1/distance;
 elapsedTime+=0.05;
 timesteps+=1.0;

 // Update the robot's controls
 a->controller->update(e);
 controls=a->controller->getOutput();

 // This calculates the movement of the robot and works out if it has hit

 the wall

}
a->setAll(controls);
wallCollisions(a);

// The final score is the average for all the rounds
score /= timesteps*10;
return score;

// This is the main function of the genetic algorithm
int GeneticAlgorithm::run()
{
 unsigned int gencounter=0;

 // Until the stated number of generations has been tested
 while (gencounter<generations)
 {
 cout<<"testing generation "<<gencounter" ";
 current=0;
 // For all members of the population
 while (current<population.size())
 {
 // Let the user know something is happening
 cout<<current<<endl;
 // Work out the fitness of the current network
 population[current]->setFitness(findFitness(population[current]));
 // Set the current network to the next one
 current++;
 }
 // Make the next generation
 nextGeneration();
 // Keep track of the generations
 gencounter++;
 }

 // Save the final generation in a file
 toFile("test.txt");

 return 1;
}

// This function creates the next generation for testing - tournament selection
void GeneticAlgorithm::nextGeneration()
{
 Network* swap;
 vector <Network*> fighters;
 vector <Network*> newpopulation;
 int random;

 // Until the new generation is big enough
for (unsigned int i=0; i<populationSize; i++)
{
 // Do this as many times as should be in each tournament (twice in this case)
 for(int j=0; j<2; j++)
 {
 // Select one of the population at random and put it in the fighters vector
 random=(int)((double)population.size()*(double)rand()/RAND_MAX);
 fighters.push_back(population[random]);
 // Sorting algorithm - makes sure fittest fighter is first in line - does nothing if
 // fighters.size() = 1 (if there is only one fighter)
 for (unsigned int k=fighters.size()-1; k>0; k--)
 {
 if (fighters[k]->getFitness() > fighters[k-1]->getFitness())
 {
 swap=fighters[k-1];
 fighters[k-1]=fighters[k];
 fighters[k]=swap;
 }
 else break;
 }
 // put the fittest one into the new population and empty the fighter vector for
 // the next go
 newpopulation.push_back(fighters[0]);
 fighters.clear();
 }
 // Delete the old population and replace it with the new population.clear();
 population=newpopulation;
 // Everyone gets mutated by a random amount from 0-0.1
 for (unsigned int i=0; i<population.size(); i++)
 {
 population[i]->mutate();
 }
}

// Function to write the final population to a file
int GeneticAlgorithm::toFile(char* file_name)
{
 fstream outfile;
 outfile.open(file_name, fstream::out);
 for (unsigned int i=0; i<population.size(); i++)
 {
 outfile << population[i];
 }
 return 0;
}


```c
outfile.close();
return 1;
}
```